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Abstract

Gas-bearing spindles are required for increased spindle speed in precise machining. Due to
manufacturing flaws or cyclic loading, cracks frequently appear in a rotating spindle systems. Cracks
markedly affect the dynamic characteristics of rotating machinery. Hence, in this study, high-speed spindles
with gas bearings and the crack effect on the instability dynamics are considered. Most investigations on
dynamic characteristics of the spindle system were confined to ball-bearing-type spindles. This work
examines the dynamic instability in a cracked rotating spindle system with gas bearings. A round
Euler–Bernoulli beam is used to approximate the spindle. The Hamilton principle is applied to derive the
equation of motion for the spindle system. The effects of crack depth, rotation speed and provided air
pressure on the dynamic instability of a rotating spindle system are studied
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

During actual service, maintaining a constant spinning speed is nearly impossible because the
spindle rotation is subjected to some small speed fluctuations. Theoretically, at a specific rotation
speed, this small speed fluctuation may cause the system to become dynamically unstable,
especially for a gas-bearing spindle. Most studies on spindle system instability were limited to the
see front matter r 2004 Elsevier Ltd. All rights reserved.
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spindle structure performance [1,2]. Only a few studies, such as Ref. [3], discussed the spindle
stability with magnetic bearings. Accordingly, this study addresses the instability of a cracked
rotating spindle with gas bearings.
Cracks, caused by manufacturing flaws or cyclic fatigue during operation, frequently appear in

rotating machinery. In high-speed spindles, numerous cracks can be observed after severe
operating conditions [4,5]. Local structural irregularities caused by cracks on the spindle may
significantly change the dynamic behavior of a rotating machinery system. Many researchers have
studied the crack effects on spindle system properties. The effects of cracks on the dynamic and
static behaviors of structures have been studied in a number of papers [6–8]. More recent papers
by Chen and Chen [9], Kuang and Huang [10] and Huang and Kuang [11] also dealt with
investigations on rotating machinery with cracks. Some researchers [12–15] studied the effects of
cracks on spindle, shaft and rotor system dynamics. In previous studies, the vibrational response
of the rotating spindle was altered due to the crack opening and closing in one cycle when the
spindle rotated. Most investigations were motivated by the thought that only a crack opening
markedly changed the spindle dynamics. A spindle with a transverse crack is the focus of this
study.
With the emergence of advanced cutting material technologies, it has become possible to

adopt much higher cutting speeds than before. For a machining system, the spindle is the most
critical element that affects the dynamic performance and capabilities in the machining process.
In some investigations [16–19], the bearings could also change the dynamics of a machining
spindle system. Hence, the bearing effects on the spindle system are studied in this article.
Bearings are used in many rotating machines to brace the rotating spindles and rotors. In the past,
the required rotor speed was sufficiently low allowing ball and roller bearings to be used in
rotating machinery. High temperatures would be generated when ball-bearing spindle systems
were operated at high speed. These high temperatures often brought about machining failure.
Modern engineering technology allows greater complexity, accuracy, and rotating machinery that
can attain high speeds. Non-contacting gas bearings are suitable for supporting a spindle and
rotor in rotating machinery because of the high temperatures generated by the contact between
the spindle and bearings.
Previous investigations on bearing spindle systems were confined to spindles with ball bearings.

As in Refs. [16,17], the focus was on the dynamic response of a spindle supported by bearings and
how the dynamics were influenced. At higher speeds, this bearing changed the stiffness of the
entire spindle system and significantly altered the system properties, as described in Refs. [18–21].
Precise machining requires higher spindle speeds, making the gas-bearing spindle necessary. The
performance and properties of gas bearings were examined in Refs. [22–26]. The application and
design of gas bearings were discussed in Ref. [24].
Some investigations, as Refs. [27–29], on the dynamic characteristics of a cracked spindle

system were confined to ball-bearing-type spindles. Few researchers paid attention to the dynamic
instability of a cracked spindle system with gas bearings. The cracked gas-bearing spindle system
is considered in this article. A round Euler–Bernoulli beam was used to approximate the spindle
model. An actual-sized spindle is studied. The gas-bearing spindle is considered with massless
springs used to model the bearing stiffness to simplify the calculations. The effects of crack depth,
rotational speed and provided air pressure on the dynamic instability of a spindle system
are investigated.
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2. Equation of motion

This paper considers a spindle supported by gas bearings, as shown in Fig. 1(a) to elucidate the
dynamic instability of a spindle system. Fig. 1(b) presents a simple model for this bearing–spindle
system. In this model, a massless spring is employed to simulate the gas bearing stiffness. The
spindle is supported by these springs. The rotational speed O must be considered in the rotating
machinery. In this study, the deflection components vðz; tÞ and uðz; tÞ denote the two transverse
flexible deflections of the spindle system. E and I represent the Young’s Modulus and area inertial
of the spindle, respectively.
The dimensionless governing equations of the spindle system are displayed as

€̄u � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
Ō _̄v þ

EI

rAL4
�Ō

2
ū þ ðū00Þ00 þ k̄x1ūdðz̄ � z̄1Þ þ k̄x2ūdðz̄ � z̄2Þ

n o
¼ 0, (1)

€̄v þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
Ō _̄u þ

EI

rAL4
�Ō2

v̄ þ ðv̄00Þ
00

þ k̄y1v̄dðz̄ � z̄1Þ þ k̄y2v̄dðz̄ � z̄2Þ
n o

¼ 0, (2)

where k̄x1 is the bearing stiffness in u deflection at a position z̄1; k̄y1 the bearing stiffness in v
deflection at a position z̄1; k̄x2 the bearing stiffness in u deflection at a position z̄2; k̄y2 the bearing
stiffness in v deflection at a position z̄2; and the dimensionless parameters are given by

z̄ ¼
z

L
; z̄1 ¼

z1

L
; z̄2 ¼

z2

L
; Ō ¼

Offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAL4

q , (3)
Fig. 1. A rotating spindle with bearings scheme. (a) a spindle supported by bearings, (b) a simple model of

spindle–bearing systems.
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ūðz̄Þ ¼
uðz̄Þ

L
; v̄ðz̄Þ ¼

vðz̄Þ

L
; k̄x1 ¼

kx1L
3

EI
; k̄x2 ¼

kx2L
3

EI
, (4)

k̄y1 ¼
ky1L

3

EI
; k̄y2 ¼

ky2L
3

EI
, (5)

and the boundary conditions are

ū00 ¼ ū000 ¼ v̄00 ¼ v̄000 ¼ 0 at z̄ ¼ 0, (6)

ū00 ¼ ū000 ¼ v̄00 ¼ v̄000 ¼ 0 at z̄ ¼ 1. (7)

The Galerkin method is employed to derive the equation of motion of the spindle, in matrix form.
Therefore, the solutions of above equation can be assumed as

ūðz̄; tÞ ¼
Xm

s¼1

fsðz̄ÞpðtÞ, (8)

v̄ðz̄; tÞ ¼
Xm

s¼1

jsðz̄ÞqðtÞ, (9)

where jsðz̄Þ; fsðz̄Þ are comparison functions for the spindle system, and pðtÞ; qðtÞ are the
coefficients to be determined about time for the system. The exact solution of the beam with
free–free boundary conditions is considered, and five modes of comparison functions are used.
After complex calculations, the equations of motion, in matrix form, for the spindle system can

be derived as

½M�1 0

0 ½M�2

" #
€pðtÞ

€qðtÞ

( )
þ 2Ōa

0 ½G�1

½G�2 0

" #
_pðtÞ

_qðtÞ

( )
þ a2

½Ke�1 0

0 ½Ke�2

" #
pðtÞ

qðtÞ

( )

þ Ō
2
a2

½KO�1 0

0 ½KO�2

" #
pðtÞ

qðtÞ

( )
þ a2

½Ks1�1 0

0 ½Ks1�2

" #
pðtÞ

qðtÞ

( )

þ a2
½Ks2�1 0

0 ½Ks2�2

" #
pðtÞ

qðtÞ

( )
¼ 0 ð10Þ

where a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAL4

q
: The elements of the matrix in the above equation are given as follows:

ðmijÞ1 ¼

Z 1

0

fifj dz̄ ¼ �½ðkOÞij�1, (11)

ðmijÞ2 ¼

Z 1

0

jijj dz̄ ¼ �½ðkOÞij�2, (12)

ðgijÞ1 ¼ �

Z 1

0

fijj dz̄, (13)
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ðgijÞ2 ¼

Z 1

0

jifj dz̄, (14)

½ðkeÞij�1 ¼

Z 1

0

f00
i f

00
j dz̄, (15)

½ðkeÞij�2 ¼

Z 1

0

j00
i j

00
j dz̄, (16)

½ðks1Þij�1 ¼ k̄x1ffiðz̄1Þgffjðz̄1Þg
T, (17)

½ðks1Þij�2 ¼ k̄y1fjiðz̄1Þgfjjðz̄1Þg
T, (18)

½ðks2Þij�1 ¼ k̄x2ffiðz̄2Þgffjðz̄2Þg
T, (19)

½ðks2Þij�2 ¼ k̄y2fjiðz̄2Þgfjjðz̄2Þg
T. (20)

The rotational speed is assumed to be fluctuated with a small perturbation speed f̄ ðtÞ; and can be
written as

ŌðtÞ ¼ Ō0 þ f̄ ðtÞ, (21)

where Ō0 ¼ O0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAL4

q
and f̄ ðtÞ ¼ f ðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rAL4

q
:

The governing equations are rewritten as

½M�1 0

0 ½M�2

" #
€pðtÞ

€qðtÞ

( )
þ 2Ō0a

0 ½G�1

½G�2 0

" #
_pðtÞ

_qðtÞ

( )
þ a2

½Ke�1 0

0 ½Ke�2

" #
pðtÞ

qðtÞ

( )

Ō
2

0a
2

½KO�1 0

0 ½KO�2

" #
pðtÞ

qðtÞ

( )
þ a2

½Ks1�1 0

0 ½Ks1�2

" #
pðtÞ

qðtÞ

( )
þ a2

½Ks2�1 0

0 ½Ks2�2

" #
pðtÞ

qðtÞ

( )

¼ 2 f̄ Ō
� 0

þ f̄
2

� 

a2

�½KO�1 0

0 �½KO�2

" #
pðtÞ

qðtÞ

( )
þ 2f̄ a

�½G�1 0

0 �½G�2

" #
_pðtÞ

_qðtÞ

( )
. ð22Þ

Therefore, Eq. (22) can be re-displayed as

½M�f €Xg þ a½G�f _Xg þ a2½K�fX g ¼ 2af̄ ½D�f _X g þ a2 2Ō0f̄ þ f̄
2

� �
½E�fX g. (23)

A space vector is introduced in Eq. (23) to solve the eigenvalue problem of the system:

fVg ¼
_X

X

( )
. (24)
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Substituting Eq. (24) into Eq. (23), the equation can be rearranged as

½M� 0

0 a2½K�

" #
f _Vg þ

a½G� a2½K �

�a2½K� 0

" #
fVg ¼ 2f̄

a½D� 0

0 0

� �
fVg þ 2Ō0f̄ þ f 2

� � 0 a2½E�

0 0

" #
fVg.

(25)

The non-dimensional frequency ōn in Eq. (25), i.e., the natural frequency of the spindle system, is
defined as

ōn ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
for n ¼ 1; 2; . . .

,
(26)

2.1. Crack effect

Considering a crack located at z̄ ¼ z̄� on this spindle, the strain energy of the defective spindle
will include the released energy caused by the crack. Fig. 2 shows the geometry of a cracked
spindle. The released energy caused by a crack, as noted in Ref. [30], with a depth of a may be
expressed as

Uc ¼

Z b

�b

ð1� m2Þ
E

K2
I ðxÞdx, (27)

where b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ðR � aÞ2

q
:

m is the Poisson’s ratio of the spindle, KI is the stress intensity factor under a mode I load and R

is the radius of the spindle. This stress intensity factor KI will be considered. In this case, the stress
intensity factors KI can be approximated as

KI ðxÞ ¼
4Pb

pR4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

q ffiffiffiffiffiffi
pa

p
F2

a
h

� �
, (28)

where Pb is the a bending moment, and

h ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

q
, (29)
ξ

η

dξ

o

R

a

Fig. 2. Geometry of a crack spindle.
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a ¼ a þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

q
� R, (30)

F2
a
h

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h

pa
tan

pa
2h

� �r
0:923þ 0:199½1� sinðpa=2hÞ�4

cosðpa=2hÞ
. (31)

The notations a and R are the maximum crack depth and radius of the spindle, respectively. Based
on the investigations in Refs. [30,31], alterations in the elastic deformation energy caused by
lateral bending moments are the only important change in the case of slender beams with a crack.
Due to the bending moment, the released energy by the crack with respect to x is obtained as

Uc
x ¼ Eð1� m2Þp

Z L

0

Z a

0

Z b

�b

q2v
qz2

dðz � z�Þ

� �2
ðR2 � x2ÞaF2

2

a
h

� �
dxdadz. (32)

Similarly, the released energy by the crack with respect to Z is derived as follows:

Uc
Z ¼ Eð1� m2Þp

Z L

0

Z a

0

Z b

�b

q2u
qz2

dðz � z�Þ

� �2
x2aF2

1

a
h

� �
dxdadz, (33)

where

F1
a
h

� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h

pa
tan

pa
2h

� �r
0:752þ 2:02ða=hÞ þ 0:37½1� sinðpa=2hÞ�3

cosðpa=2hÞ
. (34)

To simplify, the flexibility coefficients, the dimensionless equations, as functions of crack depth
a=R for a circular are employed as

Uc
Z ¼

4R

L
ð1� m2Þp

Z 1

0

q2ū
qz̄2

dðz̄ � z̄�Þ

� �2
Q1

x
R
;
a
R

� 

dz̄, (35)

Uc
x ¼

4R

L
ð1� m2Þp

Z 1

0

q2v̄
qz̄2

dðz̄ � z̄�Þ

� �2
Q2

x
R
;
a
R

� 

dz̄, (36)

where

Q1

x
R
;
a
R

� 

¼

Z a=R

0

Z b=R

�b=R

x2

R2

a
R

F2
1

a
h

� �
d
x
R
d
a
R
, (37)

Q2

x
R
;
a
R

� 

¼

Z a=R

0

Z b=R

�b=R

1�
x2

R2

� 

a
R

F2
2

a
h

� �
d
x
R
d
a
R
. (38)

The bearing–spindle with a crack can then be obtained as

€̄u � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
Ō _̄v þ

EI

rAL4
�Ō

2
ū þ ðū00Þ

00
�
8R

L
ð1� m2ÞQ1

x
R
;
a
R

� 

½ū00dðz̄ � z̄�Þ�00

�

þ k̄x1ūdðz̄ � z̄1Þ þ k̄x2ūdðz̄ � z̄2Þ

�
¼ 0, ð39Þ
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€̄v þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
EI

rAL4

s
Ō _̄u þ

EI

rAL4
�Ō2

v̄ þ ðv̄00Þ00 �
8R

L
ð1� m2Þ

�
Q2

x
R
;
a
R

� 

½v̄00dðz̄ � z̄�Þ�00

k̄y1v̄dðz̄ � z̄1Þ þ k̄y2v̄dðz̄ � z̄2Þ

�
¼ 0. ð40Þ

2.2. Supported by gas bearing

Many engineering applications for spindle systems must depend on gas bearings at high speed,
low temperature and under light cutting conditions. Hence, ball bearings are no longer suitable
for broad use. Gas bearings have frequently been used to support high-speed spindles, especially
for printed circuit board (PCB) drilling. In this investigation, the dynamic instability of a spindle
with a gas bearing is of interest. As in Ref. [24], the stiffness of the gas bearing is given by

kg ¼
dW

d h
, (41)

where W is the work caused by lubricant pressure and h is the clearance for the gas bearing. As
above, the stiffness of the gas bearing can be displayed as

kg ¼
ðps � paÞLgDg

Cg

k̄g, (42)

where Cg is the radius clearance for the bearing, Lg the bearing length, Dg the bearing diameter, Ps

the provided pressure, Pa the atmospheric pressure and

k̄g ¼
W

eðps � paÞLgDg

, (43)

where e is the eccentric ratio of the bearing. As stated above, the non-dimensional gas bearing
stiffness, k̄g; can be found if the applied air coefficient Gs and the eccentric ratio of the bearing, e;
are known. Furthermore, the bearing radius clearance, Cg; is derived as

Cg ¼
24mndg

ffiffiffiffiffiffiffiffiffiffiffiffi
gRT0

p
psGs

Lg

Dg

 !1=2

, (44)

where m ¼ 1:833� 10�10 kg s=cm2 is the viscosity, n ¼ 8 is the number of pores, dg ¼ 0:05mm is
the pore diameter, g the gravity acceleration, R the gas constant, and T0 the temperature.
3. Perturbation analysis

The equation of motion, as above, is a set of simultaneous differential equation, which cannot
be investigated directly in this study. Modal analysis is employed to make the calculation even
easier. For brevity, displacement vector fVg is defined as ½D�fug; where ½D� is the modal matrix and
is composed of the real and imaginary eigenvectors of this system. After this modal analysis, the
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simultaneous different equation is rewritten as

½I �f _ug þ ½A�fug ¼ �2
f̄

Ō0

½S�fug �
2f̄

Ō0

þ
f̄
2

Ō
2

0

 !
½Q�fug, (45)

where ½I � is a unit matrix. Eq. (45) can then be decoupled and written in component form as

_Bn � ōnZn ¼ �2
f̄

Ō0

XR

r¼1

S11
nrzr þ

XR

r¼1

S12
nrZr

 !
� 2

f̄

Ō0

þ
f̄
2

Ō2

0

 ! XR

r¼1

Q11
nrzr þ

XR

r¼1

Q12
nrZr

 !
, (46)

_Zn þ ōnBn ¼ �2
f̄

Ō0

XR

r¼1

S21
nrzr þ

XR

r¼1

S22
nrZr

 !
� 2

f̄

Ō0

þ
f̄
2

Ō
2

0

 ! XR

r¼1

Q21
nrzr þ

XR

r¼1

Q22
nrZr

 !
, (47)

where S
ij
nl and Q

ij
nl are the i–jth entries for the n–lth block matrices of ½S� and ½Q� and fug ¼

½B1; Z1; B2; Z2; . . . ; BR; ZR�:

The perturbation velocity, f̄ ðtÞ; is assumed to be small and periodic. Therefore, it can be

expanded as a Fourier series, f̄ ðtÞ ¼
PQ

j¼�QFje
iōj t; where the parameter ōj is the perturbation

frequency. As noted, the fluctuation term f̄ ðtÞ is very small in comparison to the constant speed

Ō0; so, the module Fj is much smaller than Ō0: Consider a small parameter term, �; defined as

jFM j=Ō0; where jFM j is the maximum magnitude of components Fj for j ¼ 1; 2; 3; . . . ;Q: Eqs. (46)
and (47) can then be rewritten as

_Bn � ōnZn ¼ �2� ~f
XR

r¼1

S11
nrzr þ

XR

r¼1

S12
nrZr

 !
� 2� ~f þ �2 ~f

2
� � XR

r¼1

Q11
nrzr þ

XR

r¼1

Q12
nrZr

 !
, (48)

_Zn þ ōnBn ¼ �2� ~f
XR

r¼1

S21
nrzr þ

XR

r¼1

S22
nrZr

 !
� 2� ~f þ �2 ~f

2
� � XR

r¼1

Q21
nrzr þ

XR

r¼1

Q22
nrZr

 !
, (49)

where ~f ¼ f̄ =jFM j:
By employing the multiple scales perturbation method [32], the solution for Eqs. (48) and (49)

can then be expressed in terms as

unðt; �Þ ¼ un0ðT0;T1;T2; . . .Þ þ �un1ðT0;T1;T2; . . .Þ þ �2un2ðT0;T1;T2; . . .Þ þ � � � (50)

where Ta ¼ �at for a ¼ 0; 1; 2; . . . .
Substituting Eq. (48) into Eqs. (46) and (47), yields

order �0 D0Bn0 � ōnZn0 ¼ 0, (51)

D0Zn0 þ ōnBn0 ¼ 0, (52)
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order �1 D0Bn1 � ōnZn1 ¼ � D1Bn0 � 2 ~f
XR

r¼1

S11
nrzr0 þ

XR

r¼1

S12
nrZr0

 !

� 2 ~f
XR

r¼1

Q11
nrzr0 þ

XR

r¼1

Q12
nrZr0

 !
, ð53Þ

D0Zn1 þ ōnBn1 ¼ � D1Zn0 � 2 ~f
XR

r¼1

S21
nrzr0 þ

XR

r¼1

S22
nrZr0

 !

� 2 ~f
XR

r¼1

Q21
nrzr0 þ

XR

l¼1

Q22
nrZr0

 !
, ð54Þ

where

d

dt
¼
dT0

dt

q
qT0

þ
dT1

dt

q
qT1

þ
dT2

dt

q
qT2

� � � ¼ D0 þ �D1 þ �2D2 � � � (55)

and q=qTj ¼ Dj:
The second-order expansion is not performed because of the complexity of this investigation

and the slight difference between the results from the first- and second-order approximations
[33–35]. The first-order approximate solution is

Bn0 ¼ AnðT1Þ expðiōnT0Þ þ c:c:; (56)

Zn0 ¼ iAnðT1Þ expðiōnT0Þ þ c:c:; (57)

where AnðT1Þ is an undetermined function of T1; and the corresponding complex conjugate terms
are denoted by c.c.. Assuming that ~f 0 ¼ 0 and ~f ¼

PQ
j¼1F̂ ke

ioj t þ c:c:; and substituting the general
solutions, Eqs. (56) and (57) into Eqs. (53) and (54), yields the following solutions:

D0Bn1 � ōnZn1 ¼ D1Ane
iōnT0

� 2
XQ

j¼1

F̂ j

XR

r¼1

S11
nr Are

i½ōjþōr�T0 þ Āre
i½ōj�ōr�T0

� �

� 2
XQ

j¼1

F̂ j

XR

r¼1

S12
nr iAre

i½ōjþōr�T0 � iĀre
i½ōj�ōr�T0

� �

� 2
XQ

j¼1

F̂ j

XR

r¼1

Q11
nr Are

i½ōjþōr�T0 þ Āre
i½ōj�ōr�T0

� �

� 2
XQ

j¼1

F̂ j

XR

r¼1

Q12
nr iAre

i½ōjþōr�T0 � iĀre
i½ōj�ōr�T0

� �
þ c:c:; ð58Þ
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D0Zn1 þ ōnBn1 ¼ � iD1Ane
iōnT0

� 2
XQ

j¼1

F̂ j

XR

r¼1

S21
nr Are

i½ōjþōr�T0 þ Āre
i½ōj�ōr�T0

� �

� 2
XQ

j¼1

F̂ j

XR

r¼1

S22
nr iAre

i½ōjþōr�T0 � iĀre
i½ōj�ōr�T0

� �

� 2
XQ

j¼1

F̂ j

XR

r¼1

Q21
nr Are

i½ōjþōr�T0 þ Āre
i½ōj�ōr�T0

� �

� 2
XQ

j¼1

F̂ j

XR

r¼1

Q22
nr iAre

i½ōjþōr�T0 � iĀre
i½ōj�ōr�T0

� �
þ c:c:: ð59Þ

where Ār denotes the complex conjugate of Ar: This choice depends upon the resonant
combinations of the frequencies; three cases are considered.
(i) Frequency ōj is far from ōp � ōq: The existence of the term eiōnT0 in the general solutions for

Eqs. (58) and (59) may make finding the particular solutions difficult. After complexity of the
calculation, the result indicates that the system will always be stable in this case.
(ii) Frequency ōj is near ōp þ ōq: After complexity of the calculation, according to Mathieu

theory, the system is stable if the solution of system is bounded [32]. If it is unbounded, the system
is unstable. Therefore, the transition from stable to unstable corresponds to the unbinding of the
solution. The transition curves separating stability from instability are given by

ōj ¼ ōp þ ōq � 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LpqL̄qp

q
þ Oð�2Þ (60)

where

Lpq ¼
XQ

j¼1

F̂ jð�iS
21
pq � S22

pq � iQ21
pq � Q22

pqÞ �
XQ

j¼1

F̂ jð�S11
pq þ iS12

pq � Q11
pq þ iQ12

pqÞ, (61)

L̄qp ¼
XQ

j¼1

F̂ jð�iS
21
qp � S22

qp � iQ21
qp � Q22

qpÞ �
XQ

j¼1

F̂ jð�S11
qp þ iS12

qp � Q11
qp þ iQ12

qpÞ. (62)

(iii) The frequency ōj is near ōp � ōq: Similarly, the transition curves for the combination of
resonance for the different types can be determined from

ōj ¼ ōp � ōq � 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LpqL̄qp

q
þ Oð�2Þ (63)
4. Analyses and discussion

The instability of a multimode spindle with realistically sized bearings is addressed and gas
bearings are considered in this article. The dimensions D ¼ 0:04m and L ¼ 0:2m of a rotating
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spindle are assumed. The bearing positions are z̄1 ¼ 0 and z̄2 ¼ 1: A spindle system braced by a
gas bearing is important in engineering applications, especially those involving high-speed
rotational machinery. For the above-mentioned spindle dimension, the data of gas bearing in this
article is given as follows, viscosity m ¼ 1:833� 10�10 kg s=cm2; the provided air pressure
49:225N=cm2; applied air coefficient Gs ¼ 0:25; the eccentric ratio e ¼ 0:3; the number of pores
n ¼ 8; the pore diameter dg ¼ 0:05mm [24].
Fig. 3 plots the variation in the crack flexibility with various crack depth ratios. It was found

that the crack flexibility increased as the crack depth is increased. Based on these results, the crack
depth markedly affects the shaft stiffness. As a whole, these results and those from previous
investigations are identical. The natural frequencies of a gas-bearing spindle system with and
without cracks are shown in Fig. 4. At lower modes, the natural frequencies of a spindle with gas
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Fig. 3. The variations in the crack flexibility with various crack depth ratio.
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bearings change slightly whether there are cracks in the system or not. However, at higher modes,
the natural frequencies of a spindle–bearing system markedly decrease when there is a crack in this
spindle system. With gas bearings, the crack effect on the spindle system dynamics has greater
influence at the higher mode than at the lower mode.
In actual high-speed rotating machinery applications, rotational speed cannot be maintained

perfectly constant because of small perturbations during operation. Theoretically, at some specific
rotational speed, the speed fluctuation may drive the system into a dynamically unstable
condition. Thus, the dynamic instability of a spindle with bearings must be considered, especially
for a gas-bearing spindle. For simplicity, the perturbation speed is assumed to be f̄ ðtÞ ¼ 2 cos ōt:
Fig. 5 presents the dynamic instability of a rotating gas-bearing spindle with a crack. In this figure,
the unstable regions are the dashed-line zones, near 2ō1; ō1 þ ō2 and ō1 þ ō3: The unstable
regions near 2ō1 and ō1 þ ō3 are gradually enlarged with the perturbation speed f̄ ðtÞ; that is, the
perturbation parameter �; if the spindle–bearing system has a crack. In engineering applications,
most investigators paid great attention to the lowest unstable zones in the system. Therefore, the
variations in the lowest unstable zone of a spindle system with or without a crack are illustrated in
Fig. 6. In Fig. 6(a), the lowest unstable zone, near 2ō1; is nearly independent of the perturbation,
as with a gas-bearing spindle system without cracks. Fig. 6(b) shows the lowest unstable zone in
this spindle system with a crack. The lowest unstable region near 2ō1 shifts to a lower frequency
domain when a crack exists in the system. Note, the lowest unstable zone, near 2ō1; is enlarged as
the gas-bearing–spindle system has a crack. It is clear that cracks not only alter the dynamics but
also significantly change the instability of a gas-bearing–spindle system. Corresponding to Fig. 4,
the higher mode unstable region is also considered in this article. The higher mode unstable
region, the unstable region near 2ō5; of a system with or without a crack is shown in Fig. 7. In this
figure, the unstable region near 2ō5 of a spindle system will become markedly enlarged if the
system has a crack. Similarly, the crack affects the dynamics and the instability of a spindle system
at the higher mode than at the lower mode.
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The effect of rotational speed on the dynamic instability of a rotating spindle system is also
considered. Fig. 8 plots the variations in dynamic instability for a rotating spindle braced by gas
bearings at various rotational speeds. The lowest unstable region near 2ō1 shifts to a lower
frequency domain and is simultaneously enlarged. The results imply that varying the rotation
speed may significantly affect the dynamic instability of a high-speed spindle with gas bearings.
Fig. 9 illustrates the variations in the lowest natural frequency of a gas-bearing spindle with
various amounts of provided air pressure. The results indicate that the lowest natural frequency of
a spindle with gas bearings increases if the provided air pressure increases. It was found that the
gas bearing stiffness is enhanced when the provided air pressure is increased. A variation in the
dynamic instability of a gas-bearing spindle with various amounts of provided air pressure is
plotted in Fig. 10. The lowest unstable region near 2ō1 shifts to a higher frequency domain as the
spindle system is braced by stronger provided air pressure. Fig. 11 shows the variations in the
dynamic instability of a spindle with various crack locations. As mentioned above, only the first
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Fig. 9. The natural frequencies of a gas-bearing spindle with different provided air pressure ðŌ ¼ 0:8; a=R ¼ 0:5;
z̄� ¼ 0:5).
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unstable zone was examined. When the crack is located at both ends, the lowest unstable zones are
nearly the same as a system without a crack. The lowest unstable system region is the largest when
the crack is located at the middle of the spindle.
5. Conclusions

The effect of cracks on the dynamic instability of a spindle supported by gas bearings was
studied. The most significant observations in this study are summarized as follows:
1.
 With gas bearings, the natural frequencies of a spindle system will decrease as the crack depth
increases, especially for higher mode frequencies.
2.
 The unstable zones of a spindle with gas bearings may broaden, as a crack exists in the spindle
system. Numerical studies indicated that the cracks would markedly affect the dynamic
instability of a spindle with gas bearings.
3.
 The effects of the provided air pressure and the crack location significantly change the dynamic
instability of a spindle with gas bearings.
4.
 The rotational speed will dramatically affect the dynamic instability of a spindle with gas
bearings.
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